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ABSTRACT

Given n planar existing facility locations , a planar new facility

location X is called efficient if there is no other location Y at least

as close to every existing facility as X, and strictly closer than X to

at least one existing facility. We present an algorithm which is either

of order n(log n) or order n (depending upon how the prob lem is def ined)

that constructs all eff icient locations, and establish that no alternative

algorithm can be of a lover order. With the exception of two computational

complexity results, our work is entirely self—contained, and relies almost

entirely upon simple geometrical analyses.



INTRODUCTION

Suppose a number of existing facilities are given , having planar

locations P1, . . .,  P~. A new facility is to be located in the plane

at some point X to be determined. With P~ (a
1, 

b
i
), X — (x , y) we

denote the rectilinear distance between X and P~ by r(X , F
1

) where ,

by definition .

r (X , P1) — Ix — au + ly — b11.

Given any point Y in the plane for which

r(Y , P1
) < r(X, P1), 1 < 1 ~~~

we say that Y dominates X if X and Y satisfy the n inequalities, with

at least one inequality holding strictly. In other words , Y dominates

X if Y is at least as close to every existing facility location as X is,

and closer than X to at least one existing facility location. If no

point in the plane dominates a point X*, we say that X* is efficient.

~~~

We denote the set of all efficient points by S*, and call S* the efficient

set. Note that each existing facility location P~ is in S*, for to have

a point Y dominate P~ would imply r(Y , P~) < r(P~~ P1
) — 0, in turn

implying Y — P~ .

Recently Wendell , Hurl er , and Lowe [8] have introduced and studied

the problem of finding S~ , and discuss some application contexts, with

emph asis upon moltiple objective problems. We remark that S~ may also be

of value in car rying out sensitivity analyses for single objective location

problem s , since such prob lems typically have th , proper ty that their

optimal solutions are efficient . Also it appears that S~ may be of value

in th. study of some internal warehouse location probl , in which case

_ _ _  — - —---.-- .——--- -.. - - . - - - . - - —  _ _ _ _ _
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each existing facility would be a warehouse dock , and the new facility

location would be the location of an item in the warehouse.

Wendell , Hurter , and Love develop a number of properties of S~ , and

present two different algorithms for constructing S~ . Their work relies

upon a good deal of relatively deep convexity analysis (2  1, [7 ]. We

- 

- 

establish in this paper that S~ can be characterized in an entirely self—

contained, simple , and intuitively appealing manner, using only geometry .

We consider our work both complements and supplements the work of Wendell,

Hurter, and Love. In particular, we point out that the arrow algorithm

we present for constructing S~ is closely related to, and motivated by,

the second of the two algorithms in [8 1.

The primary value of the arrow algorithm in our approach is as a tool

to facilitate proofs. A second algorithm we present, the row algo—

rithm, is more efficient. In fact, the row algorithm is the most ef-

ficient possible, in the sense that there exists no algorithm to construct

S~ which has a smaller order of computational effort, n
(l og n) ,  than the

row algorithm. For example, eff icient implementations of the f irst and

- ;  second algorithms in (8] result respectively in computational, orders

of n2 and n3; either order is greater than that of the row al~otithm . For

a discussion of a number of other algorithms of order n(log n) for solving

geometric problems, see Shamos [5 ], [6 ].

Subsequently, following (8], we define the Line Construction Procedure :

roughly speaking the procedure consists of plotting the points P1, ..., P
and constructing both a vertical and horisontal line through each point.

If the algebraic equivalent of the line construction procedure is considered

to be part of the problem formulation, rather than part of the row algôrithm,

~~~ then th. row algorith, is of order n, and no algorithm to construct S* can

_ 
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be of an order smaller than n. Even when the line construction procedure is

considered to be part of the row algorithm, the algotithm performs as if it

is of order n until n becomes “large.”

In the next section, after presenting and illustrating a number of

definitions, we present and illustrate the “arrow” algorithm which constructs

the efficient set. We then give a characterization of the efficient set.

The following section contains the row algorithm. The last section of the paper

consists of the analysis needed to justify the algorithms and the characterization

*of S

I
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CHARACTERIZING THE EFFICI ENT SET

Figure 1 illustrates a basic notion , a diamond with center P1

and radius e
~
, denoted by D(P

1
, ci
). D(P

1
, ei
) consists of all points

in the plane whose rectilinear distance from P~ is no greater than e1.

The boundary of D(Pi, ei) consists of all points in the plane whose

distance is equal to e1, and so of course has the property that any two

points on the boundary are the same rectilinear distance (ci
) from P~.

In other words, the boundary is a contour line of the rectilinear

distance from P1 of value ei.

We call line segments parallel to the line y — x SW — NE line

segments, and call line segments parallel to the line y — -x SE — NW

line segments. Note that two edges of any D(P1, e1) are SE — NW line

segments, while the other two edges are SW — NE line segments.

Line Construction Procedur!, Through each point P~, construct a

horizontal line and a vertical line. The horizontal (vertical),

line should extend at least as far right and as far left (as far up

and as far down) as every P~. Subsequently whenever we refer to a

line we mean a constructed line unless we specify otherwise. Figure 2a

illustrates the construction procedure.

Noncollinearity Assumption. We assume that not all the P~ lie on a

single vertical line, or on a single horizontal line, as in this case

S* is just the line segment joining the two which are farthest apart,

so that constructing S* is a trivial problem.

Definitions. Figure 3 illustrates a number of the definitions to

follow. For any vertical line we define the union of the line with

~1~ii~



the set of points t’ the right (left) of the line to be the set of points

which are east (west) of the line. (Note that this definition permits

a point on a vertical line to be both east and west of the line.) Similarly

we define the set of points north, and the set of points south, of each

horizontal line.

Given any two distinct adjacent horizontal lines H and H’, with H

north of H’, and any two distinct adjacent vertical lines V and V’, with

V east of V’, we call the set of points lying vest of V, east of V’, south

of H , and north of H ’, a box, and denote the box by B. We call the col-

lection of all boxes between any two adjacent vertical (horizontal) lines

a column (row). Each of the four intersections of the box with a line

we call an edge of B. We say two boxes are adjacent if their intersection

is an edge of each box. The collection of all points lying south of H ’

and east of V we call the SE direction of B (abbreviated SE(B)) similarly

we def ine SW, NW , and NE directions of B , and use the abbreviations

SW(B) , NW (B) , and NE(B) respectively. We call the abbreviations SE, SW,

NW, and NE the box direction labels. We say that a direction of B is

unoccupied (occupied) if there is no (at least one) P1 
in the direction.

We denote the union of all the boxes by B.

Arrow Drawing Procedure. For each box B we draw an arrow pointing from

SE(B) to NW(B) whenever SE(B) is unoccupied , and call the arrow a SE

arrow. We say the arrow points away from the south and east edges of B,

and points towards the vest and north edges of B. Likawise we construct

and define SW , NW , and NE arrows whenever SW(B) , NW (B) , and NE(B)

respectively is unoccupied . We call the abbreviations SE , SW , NW , NE
4 .

the arrow direction labels. Figure 2b illustrates the arrow drawing

procedure



The following observation provides the motivation for the arrow

drawing procedure.

Observation 1. Suppose we are given any box B with arrow a in B.

For any point X in B, move the point X in B in the direction towards

which ~ points along a line segment parallel to a , until the point

intersects a box edge at a point X’ . X and X’ are such that

r (X’ , P1) < r(X, P
1
), 1 < 1  <n. Further, if X’ ~ X and the direction

towards which ci points is occupied, then X’ dominates X.

To establish this observation (see Figure 4 ) ,  suppo~’ w~ thout

loss of generality, that ci is a SE arrow and X ’ ~( X. We have

r (X ’, P1
) — r(X, F1) for P~, in NE(B) U SW(B) , while r (X ’, P1

) < r(X , P
1
)

if P
1 
is in NW (B). Since SE(B) is unoccupied , X’ thus dominates X

whenever NW(B) is occupied.

Observation 2. Each box has exactly 0, 1, or 2 arrows. Whenever a

box has 2 arrows the arrows are parallel and point in opposite directions.

To establish this observation we note that if a box has perpendicu-

lar arrows then there are no P~ in some half—plane defined by a line

passing through some edge of the box, which is impossible. Hence a

box has at most 2 arrows, and if it has 2 arrows then the arrows are

parallel.

:1 Definitions. We call a box with 0 , 1, or 2 arrows a null—box, 1—box,

and 2—box respectively. For any 1—box B we call the two edges towards

which the arrow in B points the leading edges of B (see Figure 4).

By virtue of the definitions and Observation 2, we have

Observation 3. Each box in B is either a null—box, 1—box, or 2—box.

A null—box has no unoccupied directions. A 1—box has exactly 

one6



I

unoccupied direction , which has the same direction label as the box

arrow. A 2—box has exactly two unoccupied directions, which differ

by 180 degrees : the labels of the unoccupied directions are identical

to the labels of the two arrows in the box.

Figure 5 illustrates Observation 3.

Observations 1 and 3 give

Observation 4. If B is a 1—box, and X is any point in B such that X

is not on a leading edge of B, then there is a point X’ on a leading

edge of B such that X’ dominates X.

It is also convenient to state

Observation 5. Any point X which is not in B is dominated by a point

X’ which lies on the boundary of B, and is the closest point in B to X.

We now state the

Arrow Algorithm. To determine the set S* of all efficient locations,

carry out the line construction and arrow drawing procedures, and classify

each box as a null—box , 1—box , or 2—box.

If there are no 1—boxes, take S* — B; otherwise choose a 1—box B

not yet chosen and delete from B all points in B except those on the

leading edges of B: repeat this deletion procedure for every 1—box.

j . Denote by ~ the subset of B remaining after the completion of the de—

letion procedure. Take S* — 8.

We remark that if E is a comson edge of two 1—boxes, B and B ’,

if E is a leading edge of B, and not a leading edge of B’, then B (except

for one endpoint) will be deleted from ~ once B’ is chosen. Figures

~:_ - 2a , 2b , and 2c illustrates the algorithm: a null—box iø identified by a

dot in the box. 
-

7 
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I .
Due to Observations 4 and 5 , we have

Observation 6. Any point not in B is dominated by a point in L

With two additional definitions we can characterize S*.

Definition. An edge B of any box B is called a connecting edge if

(a) every arrow in B points towards E and E is contained in the

boundary of B, or

(b) there is also a box , say B’ , such that E is the common

edge of B and B ’, and every arrow in each box points towards

E.

Connecting edges are illustrated in Figure 6.

Definition. Denote by 8* the union of the following:

(a) all null—boxes

(b) all 2—boxes

(c) all connecting edges.

Subsequently we establish that S* the set of efficient points,

8, the set of points left by the algorithm, and 8* are all identical.

Thus the arrow algorithm deletes all points in B which are not points

in 8*. Figure 2c illustrates 8*.

As a f inal comsent, we note that the arrow algorithm as stated,

and each of the algorithms in [8 1, is “memoryless” to some extent ,

in the sense that each algorithm can make more use than it does of

information obtained during the process of determining the efficient

set. In the following section we present the row algorithm, which cx—

ploits such information efficiently.



j . CONSTRUCTING THE EFFICIENT SET:
THE ROW ALGORITHM

Some notation is convenient. Denote the horizontal lines by al’ H2, ~~~

from north to south , and the rows by R1, ..., R~, from north to south .

For 1 < 1 ~ p+1, denote by W
i

(E
i
) the x coordinate of the westmost (eastmost)

existing facility location on Hi. For R1, 1 < i < p, define NW
i

(SW
i
) to be

the x coordinate of the vestmost existing facility location which is north

(south) of R
1
. Define NEi

(SE
i

) to be the x coordinate of the eastmost

existing facility location which is north (south) of R1. (See Figure 11.)

As an iemediate consequence of the definitions we have

Observation 7 Let B be a box in R1, 1 < i < p.

(a) NW(g) (SW(g)] is unoccupied if and only if B is west of the vertical

• 1ine x
~~~

NWi(x
~~~ SWi) .

(b) NE~B) [SE~B ) ]  is unoccupied if and only if B is east of the vertical

line x — NE
1

(x — SE
i
).

By virtue of the above observation we can readily classify the boxes

In each row R1. The following observation facilitates the computations of

NW1, SW~, NE1 , and SEi.

Observation 8 The following recursive relationships are true:

NW1 -W 1 NE1 — E 1
NW1 — min(W1, NW1_1) NE1 — max(E1, NE11) , 2 < i < p

SW1 — ath(W~~1, ~“~+~
) SE~ — a

~~
(Ej+1, SE1+i ) 

•‘ 
1 < i ~ p—i

— W131~1 SE~ -

_ _ _ _ _ _  . -~~~~~~~~ -- ---—•-,-••~~~~~~~~~ -~ - - - -- — ---•-



The above recursions are easily established. For example, certainly

— V1. Also , the only existing facility locations north of R
1 

lie on

H1, 
~2 ’ ..., H~ , and so

NW1 — mm (W 1, W2 , ..., Wi).

Likewise

• min(W
1
, W2, ..., W11)

and so certainly

NW1 — min(W
1
, NW~ .1).

An equivalent geometric means of computing the recursions, which

both provides insight and is easy to carry out manually , may be

described as follows.

4—Color Procedure. Associate the colors Blue, Green , Red , and Yellow

with the directions NW , NE , SW , and SE respectively .

Repeat the foilvoing North to South Step for lines }
~~,..., H~~1 consecutively.

Beginning at the vest (east) boundary of B, draw a blue (green) line over H j

from west to east (east to west) terminating the line at x — NW
1 

(x — NE1) ,  which

is the point at which one of the following two events first occurs:

(a) The line initially intersects an existing facility location on H
1,

(b) The line attains the same length as the blue (green) line on

Repeat the following South to North Step for lines Hl,÷l)..., H1 consecutively~
Beginning at the vest (east) boundary of 8, draw a red (yellow) line over

from west to east (east to west) ,  terminating the line at x — SW
1 

(x — SE~)~ which

is the point at which one of the following two events first occurs:

• (a) The line initially intersects an existing facility location on

(b) The line attains the same length as the red (yellow) line on

Note, in the north to south step that when an existing facility lying on

• the west (east) boundary of B and H1 is first encountered, every blue (green)

10



line drawn subsequently is a degenerate line of zero length. In the

0 south to north step when an existing facility lying on the west (east)

boundary of 8 and H1 is first encountered , every subsequent red (yellow)

line drawn is a degenerate line of zero length. Figure 11 illustrates the

use of the 4—color procedure.

Classifying the Boxes .

Once the 4—color procedure has been completed , if we suppose the initial

horizontal lines to be uncolored, it is easily verified that the north edge

of each box colored in the north to south step is exactly one of the colors

blue or green , while the south edge of each box colored in the south to north

step is exactly one of the colors red or yellow. A box is a NW 1—box (NE 1—box)

if and only if its north edge is blue (green) and its south edge is either un-

colored or blue (uncolored or green) . A box is a SW 1—box (SE 1—box) if and

only if its south edge Is red (yellow) and its north edge is either uncolored

or red (uncolored or yellow). A box is a NW—SE (NE—SW) 2—box if and only if

its north and south edges are blue and yellow (green and red) respectively.

A box is a null—box if and only if both its north and south edges are un-

colored. The color combinations listed in this paragraph for the three types

of boxes are the only ones possible.

Definitions.

(1) We observe that NW1(SW1) is the projection onto the x axis of the east

tip of the blue (red) line on H1 (Hi+1), while NE1 (SE1) is the projection

onto the x axis of the west tip of the green (yellow) line on Hi (Hi+1). We

refer to NW1, SW1, NE1, and SE1 as the blue, red, green, and yellow projections

for row 1. For each row i, we define

I — max (NW1, SW1)

E
~~

— min (NE
~
, SE1)

L and call W~ and E~ the west and east proj ections for row i See Figure 11 for 
•

an example.

11 
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. (ii) Given a box B and distinct vertical lines x — V’ and x — V with V ’ vest

of V, we write V’ < B < V when we mean V ’ Is west of B and B is west of V.

Note that for a given row, there is at least one box B in the row such tha t

Vt < B < V if and only if V’ < V. Further, for a given box B and vertical line

V”, either B < V” or V” < B.

(iii) Comparisons of W~ and E~ for R1 are crucial to the row algorithm we

shall develop for finding S*. Define R
1 to be in Condition 0 (C—O), Con-

dition 1 (C—i), or Condition 2 (C—2) when W~ < E~, W~ — E~, and W~ > E~

respectively. Note the three conditions are mutually exclusive and ex-

haustive.

(iv) For each line H1, 1 < 1. < p + 1, define

u1 max (NW 1, SW1_1) v1 — min(NE
1
, SE11

)

where , by convention , SW — — ~~~~, SE — ~~.

Interpreting the Conditions.

(C~Q) Since a box in R1 is a null—box if and only if its north and south

edges are uncolored, the following conditions are all equivalent for at

least one box B in R1 to be a null—box: the projection of B lies between

the west and east projections for R1; W~ < B < E~ ; W~ < E~ ; R1 is in C—O.

* * * *When W1 < E1 the null—boxes in R1 are those boxes B for which V1 < B < B1.

(C—2) . Since a box in is a 2—box if and only if its north and south edges are

either blue and yellow or green and red respectively, there is a least one

2—box In ft1 if and only if the west and east projections for R1 overlap, that

is, W~ > E~ , that is, ft1 is in C—2. Subsequently we establish thfre is cx—

• actly one 2—box B in R1 if and only if E~~< B c W ~. 

* *(C— i) . Denote by V the vertical line identical to the line x — V1 
— E~ . Denote by

B that part of V lying south of B1 and north of Since W~ — E~ the west

and east projections meet , so each of the boxes of which B is a vertical edge

has at least one colored edge . If B is an east vertical edge of B , at least

12 
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‘ 
one horizontal edge of B is blue or red , while if B is a vest vertical edge of

B’, at least one horizontal edge of B’ is green or yellow. Thus an arrow of

each box in ft
1 
of which E is a vertical edge points towards E, so that E is a

vertical connecting edge. Conversely, we establIsh subsequently that if B

* *is a vertical connecting edge in R1 lying on the line x — V, then W~ — V B
1
.

Horizontal Connecting Edges.

We remark It can be shown that a horizontal box edge is a horizontal

connecting edge if and only if it Is uncolored, and not an edge of any null—

box. In order to identify the uncolored portion (if any ) of each line H1,

in the north to south (south to north) step of the 4—color procedure we note

that the blue (red) coloring of H
i from west to east stops at the point where

Hi intersects the line x — NW1 
(x — SWi_i). Thus the blue and/or red

coloring of H
1 
from vest to east stops at the point where H1 

intersects

the line x — u
1. Similarly, the green and/or yellow coloring of H

1 
from

east to west stops at the point where H
1 
intersects the line x — v

1
. Thus

when u
1 

— v
1 
all of H~ is colored, while when u1 

< v
1 

the x projection of

the uncolored portion of H1 is the interval [U
1
, v

1
].

Motivation for the Row Algorithm.

It is a readily established fact that if B is a NW 1—box, and B’ is

any box which is not east of B, and not south of B, then B’ is also a NW

1—box. Completely analogous statements are true for NE , SE , and SW 1—boxes .

Thus, roughly speaking, NW , NE , SB , and SW 1-boxes should be in the NW , NB ,

SE , and SW portions respectively of 8 . Effectively, the row algoritl La-

plicity deletes such i-boxes from B, and then what is left become s 8*.

We now state formally the algorithm based on the 4 color procedure.

~

13
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Row Algorithm.

(1) Rank the existing facilities by their y coordinates to determine the

lines H1, ..., H~~1.

(2) Compute V1 and E1, 1 < I < p + 1.

(3) Compute NWi and NE1 using the recursions of Observation 8, 1 < I < p.

(4) Compute SW 1 and SE1 using the recursions of Observation 8, 1 ~ I < p.

( 5) Compute B1 and V1 for 1 < I < p.

(6) (a) W~ < E~ if and only If ft1 is in C—0. The collection of null—boxes

in ft1 is the collec t ion of boxes B in R~ for which V1 < 8 < E~ .

Place all null—boxes in 8*.

(b) W~ — E~ if and only if R
1 is in C—i. The unique vertical connecting

edge E in R1 is the vertical edge E contained in the line x — W
1 

— B
1.

Place E in 8*.

(c) W~ > E~ if and only if ft
1 is in C—2. The unique 2—box in is the

box B such tha t E~ < B < W~; place this box in B*. All null—boxes, 2

boxes , and vertical connecting edges are now in 8*.

(7) For the horizontal line H
~
, 1 < i c p + 1;

(a) if U 1 
• v1 then H

1 contains no horizontal connecting edge;

(b) if u
1 

< V
1 

then a horizontal edge E contained in H
i is a horizontal

connecting edge if and only if it lies in H~ between the vertical lines

*x - u
1 

and x — v 1, and is not an edge of any null—box. Place each such E in B

(8) S~ — 8*. Stop.

Figure 11 illustrates the use of steps 2 through 6 of the algorithm,

j together with the result of step 7.

Computational Efficiency Questions.

We now establish that the order of computational effort of any algo-

rithm which construct. 5* is at least n(log n), where the logarithm is to

14



I
the base 2, and n Is the number of existing facilities. We shall see that

the order of computational effort of the row algorithm is n(log n). Hence

the row algorithm is “optimal”, in the sense that its order of computational

effort is as small as that of any algorithm for constructing S~ .

Given n distinct nt~~~ers , a1, ..., an, it is known that (see pp.. 159—170

of [3],  or ppa . 65—67 of E l ]) ,  the minimum number of comparisons needed to rank

the numbers is of order n(log n). Now define existing facility locations

— (ajt aj)s 1 < j < n, and consider the example problem of specifying S*

for the existing facility locations. In order to state S*, let (1], ...,

In] be a permutation of 1, 2, ..., n such that

a 1j j  < a [j÷111 1 ~~ . 3 ~~ n — 1, and def ine

S {(x , y) :  a
[j] 

< x, y < a
[3~~1] ) P  1 < 3 < n — 1.

Each Is a 2—box with SW and NE vertices of P131 and P 13~11 
respectively.

It Is easy to use the row algorithm to establish that

* * *S* — S
1 u S

2 
u ... u S

l
.

Any other correct algorithm to determine S* would also need to specify
* *each S3, and each S

3 
1. completely determined k~ S~!~~ 

numbers a [j] and

a 13~ 11, a 131 
< a lj+ l]P 1 1 3 < n — 1. Hence in order to specify S~ ~~~ y

correct algorithm must be able to sort the numbers a1, ..., an , and

so Its order of computational effort is at least n(log a). (Note this

Jr 
example problem also establishes that any algorithm to construct S~ 15

~~~~~~~~ 

at least of order n when the Line Construction Procedure is considered not

to be part of the algorithm,as 5* is the union of a — 1 boxes.)
Now consider the row algorithm. Step (1) requires the ranking of n

numbers, and so is of order n(log n). If n~ is the number of existing

facilities on H1, finding W~ and E~ is equivalent to the problem of find—
ing the maximum and minimum nt~~ ers in a collection of n~ numbers , and it

C

15
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j~~~~

. H
is known (see Pohi [41) that this problem can be solved in c(1.5)n1 — 2>

comparisons at best (here <y> denotes the smallest integer no lees than

y). Since <(l.5)n
1 

— 2> < (l.5) (n1 — 1), an upper bound on the number of

comparison s made in Step (2) is given by

~ {(1.5) (n1 
— 1): 1 < 1 < p + 1) — (l.5)n — (l.5)(p + 1).

Steps (3) through (6) each require 2p comparisons, for a total of 8 p com-

parisons. In the analysis (Observation 20) we establish that Step (7) can

be accomplished in no more than 8(p + 1) comparisons. Thus Steps (2)

through (7) require at most (1.5) n — (l.5)(p + 1) + 8p + 8(p + 1) —

(1.5) n + (6.5)(p + 1) + 8p < 16n comparisons. The minimum number of com-

parisons needed for Step (1) is n <log a> — 2<log n>+ 1, which ii no greater

than n <log n>. Thus an upper bound on the number of comparisons made in

Steps (1) through (7) 1. given by n <log a> + 16n. Therefore, roughly

speaking, Step (1) requires more effort than Steps (2) through (7) when

n <log n> > 16n, which is true when n ‘ 2
16 

— 65 ,536. Hence the nonlinear

effort of the first step does not predominate until n is “large”, in which

case the row algorithm is of order n(log a). In effect, setting up the pro—

blem (Step (1)) requires more effort than solving it when n is larget

Some Idea of how the computational effort of the row algorithm compares

with algorithms of order a2 or ~3 can be obtained by examining Table 1. The

comparisons In the table are conservative, in the sense that order a2 and a3

algorithms typically have a multiplicative constant greater than one.

16



ANALYSIS

Diamond Intersection Lemma. Given diamonds D(P1, e1) ,  I e I c {l, 2, ...,

with

D~ n {D(P 1, e1) : I E I) # •

if X Is a point in D such that no point in D dominates X, than X is in S~ .

Proof. Let Y be any point in the plane. if Y I D there is an index q c I

such tha t Y I D(Pq~ eq)~ and thus r(P q~ X) I eq < r(P
q~ 

Y ) ,  so Y does not

dominate X. By hypothesis Y does not dominate X if Y e D, so X € S*. (We

shall refer to this lemma as DIL.)

Property 1. Every null—box is efficient .

Proof. Let B be any null—box and let X e B. Since B is a null—box we

may choose P1, P2, P3 and P
4 
in NE(B) , NW(B) , SW(B) , and SE(B) respectively

as Illustrated in Figure 7 . Define e1 E r(X, P1), and construct

Di D(P1, e1) ,  1 < 1 < 4. With L13 D~ fl D3, L24 D~ A D4, we note

L13 is a SE—NW line segment, L is a SW—NE line segment , and

D — L 13 n L 24 — (XJ.

Thus no point in D dominates X. DIL thus implies X € S*. Since

X is an arbitrary point in B, B c s* .

Observation 9. Only a 1—box can be adjacent to a 2—box. Wh enever a

1—box and 2—box are adjacent , the arrows in the boxes are parallel,

and the arrow in the 1—box point, towards the edge common to the 1—box

and 2—box.

Proof. Let B be a 2—box, and let B’ be a box adjacent to B. It is

direct to verify that if B’ is a null—box, an occupied direction of

B’ is contained in an unoccupied direction of B, which is impossible.

- — —  - 
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If B ’ is a 2—box, either an occupied direction of one box is contained in

an unoccupied direction of the other, or else there is no P1 on the line

separating the boxes; both impossible situations. If B’ is a 1—box, an

occupied direction of B’ Is contained in an unoccupied direction of B ax—

cept when the arrows in the two boxes are parallel, which completes the

proof.

Observation 10. Let B be a 2—box, and let B’ be a 1—box adjacent to B, and

in the same row (column) of boxes as B. If B” is any other box in the

same row (column) as B and B’ such that B’ lies between B and B”, then B”

is also a 1—box, and the arrows in B’ and B” have the same label.

Proof. Let B be a 2—box . By Observation 9, we know that any box B’ ad-

jacen t to B is a 1—box. We may assume that B, B ’, and B” are all in the

same row. Also, due to symmetry, we may assume that the arrow labels of B

are NE and SW, and that B’ is east of B. Thus B” will be east of B’, as illustra—

ted in Figure 8. Now SW(B’) C SW(B”) and SW(B’) occupied implies SW(B”) Is oc-

cupied. NW~B) c NW(B”) and NW(B) occupied-implies NW(B”) is occupied.

NE(B”) c NE(B) and NE(B) unoccupied implies NE(B”) is unoccupied. If SE(B”)

is unoccupied, no P1 would lie on the vertical line passing through the

east edge of B”, which 1, impossible. Thus SE(B”) is occupied, and B” is

a 1-box having an arrow with a NE label, the same label as the arrow in B’

Property 2. Every 2—box is efficient.

Proof. Let B be any 2—box. Without 1g.. of generality we may assume the

arrows in B are NE and SW arrows, that B is the intersection of half plaaes

defined by lines as illustrated in Figure 9. If there is a 1—box B’ which

is adjacent and north of B, by Observations 9 and 10, the arro’i in B’

18



has a NE label. If there is an adjacent box B” to B such that B” is south

of B, then the arrow in B” has a SW label. Since SW(B) is unoccupied, there

must be some P1 € V n NW (B) , or else there would be no P~ £ V. Likewise,

there  must be some P
3 

c V’ n SE(B). Choose any X c B, and def ine

e
1 

— r(X,P
1
) ,  e

3 
— r (X ,P

3
) ,  D — D(P

J
, e

i
) n D(P

J
, e

3
). Since X c D,

by DIL X c S~ provided no point in D dominates X. We make the

following observation: B is a SW—NE line segment, entirely contained

in the column of boxes, say C , which contains B and B’ . Now If Y c D n B ,

r(X, P1) — r(Y , P1
) for all I, so Y does not dominate X, thus completing

the proof for the case when B’ — — B”. If Y c B, Y I B, Y is in a box

in C which Is a 1—box , and , hence, by Observations 9 and 10, there is a

point Y’ in B n D which dominates Y. Since Y’ dominates Y, and V does

not dominate X, Y does not dominate X, so X € S*. Thus B c S*.

Property 3 Every connecting edge is efficient.

Proof. Let E be any connecting edge. Without loss of generality, we may

assume E Is an east edge of a 1—box B and that B has a SW arrow.

Consider first the case where E is contained in the boundary of 8.

Then, as Figure 6a illustrates, since E lies on the east boundary of 8,

SW(B) is unoccupied, and there is a point P~ c H A V. Also, since E lies

on the east boundary of 8 and NE(B) is occupied, there is a point 
~k 

€

V n NE(B). If X e E, e1 r(X , F
1
), ek r(X , 

~k~’ and D D(P 1, e1) n

D(Pk, e.g) , then D — {X} , and so by DIL, I € S* and thus E c s* •

Now supp ose there is a 1—box B’, adjacent to, and east of , B. The

arrow in B’ is either a SE arrow, as illustrated in Figure 6b, or a NE

F arrow , as il1ustra tec~ in Figure 6c • In the former case we conclud, there

is some P1 € SE(B) n SW(B’), some P
3 ~ V’ n NW(B) , and some e V’1 fl NE(B’),

as illustrated by Figure 6b. Hence if X € B, defining e — r(X, P ),

LT~~~~~~~~~~~

. 
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I
e3 

— r(X, P
3
), ek — r(X, 

~k~’ 
D — D(P

1
, e1

) n D(P3, e3) A D(Pk, ek~ ’ 
we

conclude D — {x} and thus, by DIL, X, and hence E , is efficient. In the

latter case, NE(B ’) unoccupied and NE(B) occupied implies some P1 e NE(B) A V.

Likewise SW(B) unoccupied and SW(B’) occupied Implies some € SW(B’) A V.

Hence for any X € E , with e1 r(X , Pt),  ek r(X, 
~k~’ 

B E D(P~~ e1) n

D(P k , ek), we conclude B — {x} , invoke DIL, and conclude X, and thus K,

is efficient.

Observat ion 11. If X € ~ and lies at the intersection of four 1—boxes , then

X lies on a connecting edge.

Proof. With reference to Figure 10, there exist 1—boxes, B1, ..., B4 such

that (X } — A B2 ri B3 n B4. Define the edges E12 — B1 n B2, E23 — B2 A B3,

E34 — B3 n B4, K41 — B4 n B1. We shall establish at least one of these

edges is a connecting edge. Suppose none of the edges is a connecting edge.

Then for each edge Eu at least one arrow in B1 or B
3 

does not point towards

K13. Without loss of generality, suppose the arrow a1 in B1 does not point

towards E14, so that a1 is not a NE or a NW arrow, a1 cannot be a SW arrow,

for then X would not be In L Thus L.~ is a SE arrow, and points toward E12.

The arrow cg
2 
in B2 cannot be a SE arrow as then X would not be in ~. Since

a 1 points towards K12, a 2 cannot be a SW or NW arrow, and thus U
2 ~~ a NE

arrow . Similarly, we conclude is a NW arrow, and is a SW arrow. But

now we have the situation illustrated in Figure 10 , where an occupied direc-

tion of each box i~ contained in an unoccupied direction of an adjacen t box.

Such a situation is Impossible , and so I lies on at least one connecting

edge .

Property 3. ~ ii contained in 8*.

Proof. Let X € ~. Since every box in 8 is a null—box, 1—box, or 2—box,

20



X must lie in one such box. If the box is a null—box or 2—box , certainly

X 8* , so it remains to consider the case where I is in a 1—box , but X is

in no null—box or 2—box .

Since X Is in a 1—box , say B1, and in ~ , X must lie on some leading

edge of B1, say E, of positive length. If K i~ contained in the boundary

of 8~ since the arrow in a~ points towards K, K is a connecting edge. Thus

it remains to consider the case where E is not contained in the boundary of

8. In this case there Is some box , say B2, such that E — A B~. Thus

X is in B2, and so B2 must be a 1—box. If X is not an endpoint of K , since

X € 6 the arrows in B
1 

and B
2 must point towards E, and so E is a connecting

edge. Thus suppose X is at an endpoint of E. Since X € B1 A B2 and I is

not on the boundary of B, there exist 1—boxes 33 and 34 such that {X} —

B1 n B2 n B3 n 34 (as illustrated in Figure 10 )
~ Thus, by Observation 11,

X lies on a connecting edge.

Theorem 1. L 8*, and S* are identical and nonempty.

Proof. By Observation 6 , every point not in B is dominated, and thus

c ~ • By Properties 1, 2, and 3, 8* C 5*, and so 8* c S* c 8 .  Since

Property 4 gives ~ c 8*, we conclude 8* — 5* — B. As every P
~ 

is in S*,

S*#~~, so 8*~~~8 
_ S*#+ .

~~~~ ~~~ - -

~~.1
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We now give the analysis needed to justify the row algorithm.

Observation 12. A box B in is a null—box if and only if W~ c 3 ~

Proof. By Observation 7, the four d i.r.ctions of a null—box B are oc-

cupied if and only if NW1 
< B, SW1 < B, B < NE1, B < SE1, which is equiv—

* *alent to W1 
< B < K

1.

Observation 13. A box B In is a 2—box if and only if either NE1 < B < SE
1

or N W ~~~~B < S W 1.

Proof. By Observation 3, a box B in is a 2—box if and only if B is

either a NW-SE or a NE—SW 2—box. B in is a NE—SW 2—box if and only if

NE(B) and SW(B) are unoccupied and NW(B) and SE(B) are occupied. Thus

Observation 7 implies B is a NE—SW 2—box if and only if NW1 < B , NE1 < B,

B < SWi, B < SE1. By definition, NWi < NE
1 

and SW~ I SE
1
, so B in is

a NE—SW 2—box if and only if NE1 
< B < SW~. Similarly, B in R1 is a NW—SE

2-box if and only if SEi < ~ < NW
1.

Observation 14. Given a box B in R1,

NE1 < B-c SWi 
(I)

or SE1 < B < N W
1 

(ii)

if and only If
* *< B c w

1
. (iii)

Proof. By definition, E~ I SE X, E~ 5. NE1, SW1 .5. W~, and NW1 .5. W~, so if

(I) or (ii) is true then (iii) is true.

Suppose (iii) is true. Either E~ — SE1 or — NB1. When E~ — SE1,

(iii) and SW1 < SE1 give

SW1 <SE
1 — E ~~<3<max (SW1, IIW1). (iv)

Since (iv) implies B c $W~, we concluds (iii) impliss (ii). When E~ — NE1,

(iii) and iN1 < NE1 give

22

_ _ _ _ _ _ _ _  - -  — -.



NW < NE — E < B < max(SW , NW ). (v)1 — •  i 1 -  1. 1r Since (v) implies B < SW
1, we conclude (iii) implies (ii).

We su arize Observations 9, 10, 13 and 14 in

* *Observat ion 15. A box B in is a 2—box if and only if E
1 

< B < W
1
.

contains exactly one 2—box if and only if E < W~ .

Next we state a readily established result needed in identifying ver-

tical connecting edges.

Observation 16. (a) If B is a westmost NE(SE) 1—box in R
1, then every box

east of B in is a NE(SE) 1—box , while if B’ is any box In H
1 

which has a

label and is west of B, then the label of B ’ is either NW or SW. (b) If

B is ar~ eastmost NW(SW) 1—box in H1, then every box west of B in R1 is a

NW(SW) 1-box , while If B ’ is any box in R1 which has a label and is east of

B, then the label of B’ Is either NE or SE. (c) The labels of 1—boxes in

• any row are of at most two different types.

Observation 17. Given a vertical edge E in R1 lying on the vertical line

x V , E is a vertical connecting edge if and only if W~ — V — E~ .

Proof. Due to symmetry it is enough to consider the cases W~ — SW
1
,

— NE1, and K1 — SE
1
, as illustrated in Figure 6. Also we may assume

there is a box B in H1 such that E is the east edge of B. If E lies on the

line x - V — SW1 — W~, B has only one arrow, a SW arrow , which points awards

E. Thus if K Is contained in the east boundary of B then K is a vertical

connecting edge. Otherwise there is a box B’ In Ri, east of B, such that

B - B o B ’. Since E lies on the l in e x —V a n d V— S E 1 o r V— N E 1, there

is exactly one arrow in B’, a SE or NE arrow, which points towards B. Thus

— V — W~ implies B is a ver tical connecting edge.

Conversely, let B be a vertical connecting edge in H1 contained in th.

U l l n e x — V .  IfE ~~# W ~, Observations 12 snd 15 vould jmp1y R1
js j u C — O

or C — 2, in which case Obiervatj o~ 16, or Observations 9 and 10, would Imply

an arrow of a box of which B is an edg. does not point ~ovards I, contradicting

4. 23



the fact that E is a vertical connecting edge. Thus W~ — E~ . 

* *It remains to show W
1 

= V — E1. Let x — V’ be a line such that W1 — V’ — B
1

and suppose V ~ V
1 . Since W~ — V’ , every box west of V’ will have either a

*NW or SW label , while since V t — K every box east of V’ will have either a

NE or SE label. Denote by E’ the vertical edge in R
1 contained in V’. From the

first part of the proof we know K’ Is a vertical connecting edge. Without loss

of generality we may assume V’ is west of V. Thus there exists a 1—box B’ of R~
such that B’ is a west edge of B ’ , and there exists a 1—box B of R

i such that

E is an east edge of B. Since K and B’ are vertIcal connecting edges, there Is

a NW or SW arrow in B pointing towards K, and a NE or SE arrow In B’ pointing

towards E’. Further, NE(B) and SE(B) are occupied while either SE(B’) or NE(B’) is

unoccupied . But NE(B) and SE(S) are contained in SE(B ’) and NE(B’) respectively.

Thus an occupied direction of B is contained in an unoccupied direction of

B’ if V # V’ 1 and we have a contradiction. Thus W~ — V — E.
Given any horizontal edge K, whenever F is east of the vertical line

x - V and west of the vertical line x — V’ we write V ‘C E < V’ . Given any

edge E contained in H
1 

it is easy to verify that K is uncolored if and only if

‘C E ‘C v1. Hence the following result can be established:

Observation 18. Given an edge E contained in a horizontal line H~, K is a

hor izontal connecting edge if and only if u
1 ‘C E ‘C v

1 
and E is not an edge of

any null—box.

We now state

Theorem 2. The set constructed by the row algorithm is the efficient set.

Proof. A direct consequence of Observations 12, 15, 17, 18, and Theorem 1.

It now only remains to consider the computational effort involved in Step (7)

of the row algorithm. Bus to Observation 18, if u1 
— v~ th re is no connecting



r
edge in H

1
. If < v~ and we remove from H

1 
the interior points of all

edges which are null—box edges, then the remaining edges (If any) are the

horizontal connecting edges in H
1. We consider the case where there are

null—boxe s in both R~_1 and R~ 1 as this case requires the most effort. Let

I [ui
, v

11, J
’ [W~~1, E~~1], J” [W~, E~ J. I is the x projection of the

uncolored portion of H
1, while , by Observation 12, J’ and 3” are the x—projections

of the null—boxes in R
1~1 

and H
1 

respectively. Because the null—boxes whose

horizontal edges are in H1 have these edges uncolored, we have J ’ c I , 3” ~ I.

The most direct way to determine the computational effort for this case is

to state a simple algorithm which identifies all the horizontal connecting edges

in H
1
. We consider the algorithm self—evident , as it simply determines all the

points in I which are not interior to 3’ U 3”.

Observation 19. When R and R each contain null—boxes, the horizontal con—i—I

sect ing edges in H
1 
may be determined as follows.

(a) check to see which of the intervals 3’ and 3” has a leftmost endpoint

denote this Interval by I’ and denote the other interval by I”. Let I ’ [a’, b’],

— (a” , b” I

(b) check to see if I’ abuts the left endpoint of I; if it does not, the edges

in H
1 
whose x projections lie in Lu

1
, a’] are horizontal connecting edges.

(c) Check to see if I ’ and I” intersect; if they do not, the edges in whose

x projections lie in (b’ , a”] are horizontal connecting edges.

(d) Check to see which of the two intervals I’ and I” has a rightmost right

endpoint, and denote this interval by I” — (a”, b’!’).

(e) Check to see if I” abuts the right endpoint of I; if it does not, the edges -

In H
1 

whose x project ions lie in (b” , v1J are horizontal connecting edge..

In steps (a) through Cs) respectively we note that the following terma are

_ _ _  -



compared: ~~ and W U
1 and a’ ; b’ and a”; b’ and b” ; b” and v~ . -Hence ,

given all the necessary data , we can find all the horizontal connecting edges

by making at most S(p + 1) comparisons. To obtain the data , with reference
I

to Step (7), we must compute the u1 
and v1 (2 p comparisons) and then compare

them (p + 1 comparisons). Thus Step (7) requires at most

5(p + l )+ 2 p + ( p + 1)< 8(p + l) comparisons. A s p + 1 < n , we have

Observation 20. Step (7) of the row algorithm requires at most 8(p + 1) < 8 n

comparisons.
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Figure 5: Null-Box, 1—Box, and 2—Box Fv*.plea
(o: occupied, u: unoccupied)
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- 2 4 8 33

4 16 64 69

8 64 512 145

16 256 4,096 305

32 1,024 32 ,768 641

64 4 ,096 262 ,144 1,345

128 16,384 2,097 ,152 2 ,817

256 65 ,536 16,777 ,216 5,889

2 3Table 1: ComputatIonal Ef for t  Comparisons for n , n , and Row Algorithm ,
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